Convergence of an Adaptive Finite Element Method for Controlling Local Energy Errors
نویسنده
چکیده
A number of works concerning rigorous convergence theory for adaptive finite element methods (AFEM) for controlling global energy errors have appeared in recent years. However, many practical situations demand AFEM designed to efficiently compute quantities which depend on the unknown solution only on some subset of the overall computational domain. In this work we prove convergence of an adaptive finite element method for controlling local energy errors. The first step in our convergence proof is the construction of novel a posteriori error estimates for controlling a weighted local energy error. This weighted local energy notion admits versions of standard ingredients for proving convergence of AFEM such as quasi-orthogonality and error contraction, but modulo “pollution terms” which use weaker norms to measure effects of global solution properties on the local energy error. We then prove several convergence results for AFEM based on various marking strategies, including a contraction result in the case of convex polyhedral domains.
منابع مشابه
Convergence and quasi-optimality of an adaptive finite element method for controlling L 2 errors
Convergence and quasi-optimality of an adaptive finite element method for controlling L2 errors ⋆ Alan Demlow1, Rob Stevenson2 1 Department of Mathematics, University of Kentucky, 715 Patterson Office Tower, Lexington, KY 40506–0027 ([email protected]) 2 Korteweg-de Vries (KdV) Institute for Mathematics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands (R.P.Stevenson@...
متن کاملUpdating finite element model using frequency domain decomposition method and bees algorithm
The following study deals with the updating the finite element model of structures using the operational modal analysis. The updating process uses an evolutionary optimization algorithm, namely bees algorithm which applies instinctive behavior of honeybees for finding food sources. To determine the uncertain updated parameters such as geometry and material properties of the structure, local and...
متن کاملError reduction and convergence for an adaptive mixed finite element method
An adaptive mixed finite element method (AMFEM) is designed to guarantee an error reduction, also known as saturation property: after each refinement step, the error for the fine mesh is strictly smaller than the error for the coarse mesh up to oscillation terms. This error reduction property is established here for the Raviart–Thomas finite element method with a reduction factor ρ < 1 uniforml...
متن کاملAn Adaptive Finite Element Approximation of a Variational Model of Brittle Fracture
Abstract. The energy of the Francfort–Marigo model of brittle fracture can be approximated, in the sense of Γ-convergence, by the Ambrosio–Tortorelli functional. In this work we formulate and analyze two adaptive finite element algorithms for the computation of its (local) minimizers. For each algorithm we combine a Newton-type method with residual-driven adaptive mesh refinement. We present tw...
متن کاملAdaptive Unstructured Grid Generation Scheme for Solution of the Heat Equation
An adaptive unstructured grid generation scheme is introduced to use finite volume (FV) and finite element (FE) formulation to solve the heat equation with singular boundary conditions. Regular grids could not acheive accurate solution to this problem. The grid generation scheme uses an optimal time complexity frontal method for the automatic generation and delaunay triangulation of the grid po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 48 شماره
صفحات -
تاریخ انتشار 2010